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CHAPTER 17 

The Scientific Problems with Using Non-Human 

Animals to Predict Human Response to Drugs 

and Disease 

Ray Greek 

President, Americans for Medical Advancement, California, United States 

Lisa A. Kramer 

Professor of Finance, University of Toronto, Ontario, Canada 

1 Introduction 

Every year, and in countries around the world, significant time and resources 

are devoted to the noble cause of developing drugs to treat and cure human 

disease. With rare exception, drug interventions cannot reach commercial­

ization without safety and efficacy having first been demonstrated in animal 

models. The intention of regulations, which require the use of animal models 

in such contexts, is to ensure that only safe and effective drugs end up being 

used by patients. Similarly, it is standard practice for researchers to employ 

animal models in their attempts to understand the way diseases present and 

progress in humans. Unfortunately, there exist serious theoretical and empiri­

cal concerns regarding the standard practice of using non-human animals to 

model human response to perturbations, such as drugs and disease. These 

concerns are important because conducting disease research and drug devel­

opment in a manner that is not supported by science will have suboptimal 

implications for the humans who rely on that research, which encompass the 

entire population. Based on complexity science, modem evolutionary biology, 

and empirical evidence, we demonstrate that animal models have failed as 

predictors of human response. That is, animal models do not and cannot have 

acceptably high predictive value for human response to drugs and disease. By 

this we mean that animal modeling, as a methodology, is for all practical pur­

poses not predictive of human response to drugs and disease; and hence it 

should be abandoned in favor of human-based research and testing, such as 

personalized medicine, a new field that takes into account the unique genetic 

make-up of each individual patient. 
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392 GREEK AND KRAMER 

People are accustomed to hearing about the ethical issues arising from the 

use of non-human animals in biomedical research, testing, and science in gen­

eral. But there are scientific issues with the practice as well. Researchers who 

employ animal modeling often attempt to justify the practice based on claims 

of accurately predicting human response to drugs and disease. For example, 

Giles (2006, p. 981) states: "In the contentious world of animal research, one 

question surfaces time and again: how useful are animal experiments as a way 

to prepare for trials of medical treatments in humans? The issue is crucial, as 

public opinion is behind animal research, only if it helps develop better drugs. 

Consequently, scientists defending animal experiments insist they are essen­

tial for safe clinical trials, whereas animal-rights activists vehemently maintain 

that they are useless". 

One need not search hard to find examples claiming non-human animals 

play an essential role in the quest to treat and cure human disease. For ex­

ample, the American Physiological Society (APA) (2017) states on its website: 

"Animals are used in research to develop drugs and medical procedures to treat 

diseases." Andrew B. Rudczynski, Yale University's associate vice president for 

research administration, stated in a letter to the editor (20n): "[T]he basic re­

search model used by Yale University and its peer institutions is scientifically 

valid and predictive of human disease". Michael F. Jacobson, executive direc­

tor of the Center for Science in the Public Interest (2008) stated: "We must 

test animals to determine whether a substance causes cancer". Huff, Jacobsen, 

and Davis ( 2008, p. 1439) stated: "Chemical carcinogenesis bioassays in animals 

have long been recognized and accepted as valid predictors of potential cancer 

hazards to humans." Lin (1995, p. 1008) stated: "Although the validity of animal 

testing to predict efficacy and or safety in humans has been questioned, it is 

generally believed that data from animal studies can be reasonably extrapolat­

ed to humans with the application of appropriate pharmacokinetic principles 

[ . . . .  ] From an evolutionary point of view, all mammals are similar, because they 

originate from a common ancestor, yet they differentiate because of their dis­

similar environmental adaptations". 

While it can be argued that there may be scientifically justified grounds for 

the use of non-human animals in some contexts, other than those that involve 

predicting human responses, it is most common to see attempts to justify the 

use of non-human animals for applications to human health ( see Kramer 

and Greek (2018), for additional discussion of this point). Therefore, it is ap­

propriate to carefully examine the claimed validity of the animal model for 

predicting human outcomes. 

To that end, consider Trans-Species Modeling Theory (TSMT), a concept 

that was formalized by Greek and Hansen (2013), based on a combination of 
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extensive previous research on complex systems science and evolutionary bi­

ology, as summarized by authors, including Greek and Rice (2012), LaFollette 

and Shanks (1996), LaFollette and Shanks (1998), Shanks and Greek (2008), 

and Shanks and Greek (2009). TSMT states: "While trans-species extrapolation 

is possible when perturbations concern lower levels of organization or when 

studying morphology and function on the gross level, one evolved complex sys­

tem will not be of predictive value for another when the perturbation affects 

higher levels of organization" ( Greek and Hansen, 2013, p. 254 ). That is, according 

to science, the observation of a drug response in one species is uninformative 

about the drug response in another species. This theory is based on complex­

ity science, evolutionary biology, and empirical evidence. In the remainder of 

this article, we explain why the fields of complexity science and evolutionary 

biology are relevant to understanding animal modeling and evaluating the in­

ability of animal models to predict human response to drugs and disease. 

LaFollette and Shanks (1996) and the Medical Research Modernization 

Committee (2006) were among the first to document systematically the meth­

odological failure of using one evolved complex system to model another, in 

terms of predicting outcomes. Subsequent work by Greek and Hansen (2013), 

Greek and Rice (2012), Shanks and Pyles (2007), and Shanks and Greek (2009) 

then led to the development of TSMT, which is the only theory (we intention­

ally use the word theory as opposed to hypothesis; see National Academies of 

Science Engineering Medicine, 2016) that accounts for both past and pres­

ent successes and failures of animal modeling. It is also the only theory that 

explains why animal models will never offer practical predictive value for 

disease and drug research. To be clear, the aforementioned authors did not 

discover evolution, complexity science, or any aspect of probability. Rather, 

they relied on what had been previously published in those disciplines and 

combined various insights to formalize the case against the use of animal mod­

els to predict outcomes in other species. 

TSMT was a paradigm shift in animal modeling analysis. Moreover, TSMT 

was inclusive of valid past criticisms, while simultaneously explaining and 

taking those criticisms further. For example, TSMT obviated the need to point 

out that small differences in environments among lab animals influenced 

results, as many anti-vivisectionists did and continue to do, because even 

under perfect environmental conditions, one evolved complex system would 

not be expected to have predictive value for another. Likewise, there is little 

to no value in analyzing why one species has historically been inadequate for 

predicting human response, because according to TSMT, no species, regard­

less of genetic similarity, will ever be similar enough to another to serve as a 

valid predictive model. TSMT is also more precise and has more explanatory 
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394 GREEK AND KRAMER 

power than general criticisms, such as species differ in their metabolisms. Fur­

thermore, TSMT explains why increasing scientific rigor, the current mantra 

for justifying the use of animal models, will have no effect on predictive value. 

We now tum to examining the three pillars underlying TSMT, comprising 

complex systems science, evolutionary biology, and empirical evidence. 

2 Complex Systems 

Advances in the field of complex systems have highlighted the poor predictive 

value of animal modeling. The study of complex systems and chaotic systems, 

currently usually classified under the general heading of complex systems, 

dates back to the 1950s and began a revolution in physics, similar to that of 

the early 1900s involving relativity and quantum mechanics (Gell-Mann, 1994; 

Gleick, 2008; Goodwin, 2001). 

The following are characteristics of simple systems: 

- They are nothing more than the sum of their parts. 

- They have predictable behaviors. (There are no unanticipated or unexpected 

behaviors.) 

- They are usually composed of just a few components. 

- They can be intuitively understood. 

- They are in equilibrium. (They are non-dynamic.) 

- There are few interactions and feedback loops. (For example, compare a 

primitive barter system in contrast to our modem market-based economy). 

Rosen (1999, p. 392) states: "A system is simple if all its models are simulable. 

A system that is not simple, and that accordingly must have a nonsimulable 

model, is complex". This should give us pause: A complex system is nonsimu­

lable. Note that simulable may mean different things to different people. When 

scientists state that biological complex systems are nonsimulable, they mean 

nonsimulable at the complex level. The aim of researchers who use animal 

models is not to gain insight into the simple systems that are basic building 

blocks of the complex system. For example, at the simple level, we can rely 

on knowledge about simple systems to extrapolate that the final outcome for 

two different species will be the same when, for example, they are perma­

nently deprived of water or they are thrown out of an airplane at 30,000-feet 

elevation. Researchers attempt to use non-human animals to model humans at 

higher, complex levels of organization, because this is the level at which disease 

and drug effects occur. So, when an animal modeler claims that their model 

simulates a human, unless they are speaking of low levels of organization ( much 
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simpler than the levels at which drug and disease responses occur), this is not 

possible. 

In contrast to simple systems, complex systems are characterized by the fol-

lowing ( see Figure 17 .1 for a diagrammatic representation of a complex system): 

Complex systems are composed of many parts that themselves have hierar­

chal levels of organization. 

Complex systems have feedback loops. 

Complex systems exhibit self-organization. 

Complex systems respond to perturbations in a nonlinear fashion. Because 

small changes in a complex system can result in outcomes that are not pro­

portional to the input, one biological complex system can die because of 

what, at first, appears to be a minor change or difference between it and 

another almost identical complex system (Morange, 2001; Pearson, 2002 ). 

For example, Northrop (2011, p. xiv) states: "Early bioengineers, biophysi­

cists, and systems physiologists tried to characterize certain physiological 

regulators as linear and stationary. Initially, linear systems analysis was 

inappropriately applied to certain complex, physiological regulators and 

--- Characteristics of Complex Systems 

Complex Systems 

Involve: 

Many 
Components 

I � .. 
Dynamically 
Interacting 
and giving rise to 

A'complex' system 

_________ Emergent behavior that cannot 
be simply inferred from the 
behavior of the components 

L...-.;..;.....;.;..__,;_...;.;....;;;_-+-;.;.;.;......;.;.;..;.;.;.;__,;_...;... _______ -L. 
A Number of _j 
Levels or Scale s 
wh ich exhibit 
Common 
Behaviors 

FIGURE 17.1 The characteristics of complex systems. 

SOURCE: MARSHALL CLEMENS/IDIAGRAM (HTTPS://WWW.IDIAGRAM.COM) 

Note: A complex system is built out of simple systems. As more and more 

of these simple systems combine and form a complex system, the level of 

organization increases and simulability decreases. 
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396 GREEK AND KRAMER 

control systems ( e.g., pupil regulation and eye movement control), which 

resulted in black-box, closed-loop models in which linear transfer function 

modules were connected to a nonlinear module in a single feedback loop. 

These were phenomenological input/output models that gave little insight 

into the physiology and complexity of the systems". 

- Complex systems demonstrate redundancy and robustness. Complex sys­

tems have redundant parts and, therefore, losing a part may not affect 

function. Adding to this is robustness, which means that perturbations may 

not result in dysfunction. Complex systems have emergent properties that 

Aziz-Alaoui and Bertelle ( 2009, preface) define as follows: "Emergence and 

complexity refer to the appearance of higher-level properties and behaviors 

of a system that obviously comes from the collective dynamics of that sys­

tem's components. These properties are not directly deductable from the 

lower-level motion of that system. Emergent properties are properties of 

the "whole" that are not possessed by any of the individual parts making 

up that whole. Such phenomena exist in various domains and can be de­

scribed, using complexity concepts and thematic knowledges." 

- Examples of emergent properties include the following from Van Regen­

mortel (2002): 

- The three physical states of water and phase transitions, such as boiling 

point. 

- The viscosity of water ( individual water molecules have no viscosity). 

- The color of a chemical. 

- A melody arising from notes. 

- The saltiness of sodium chloride. 

- The specificity of an antibody. 

- The immunogenicity of an antigen. 

- The components of complex systems can be grouped as modules, and the 

modules communicate with each other. Nevertheless, failure in one module 

does not necessarily spread to the system as a whole because of redundancy 

and robustness. 

- Complex systems are dynamic. They communicate with, and change in re­

sponse to, their environment. 

- The whole of a complex system is greater than the sum of its parts, and 

hence complex systems have properties that cannot be determined even 

with total knowledge of the components of the system. This limits the valid­

ity of reductionism when studying complex systems. 

- Importantly for our discussion, complex systems are also very dependent on 

initial conditions; for example, genetic make-up in the context of individuals 

or species. This means that a very small change in the initial conditions of 
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two otherwise identical complex systems ( e.g., monozygotic twin humans), 

may result in sickness for one but not the other. In strains of mice, knocking 

out one gene has been shown to result in death for one strain, while the 

other thrives (Belmaker et al., 2012; Bell and Spector, 2011; Bruder et al., 2008; 

Castillo-Fernandez et al., 2014; Chapman and Hill, 2012; Czyz et al., 2012; 

Dempster et al., 2011; LeCouter et al., 1998; Raineri et al., 2001; Pearson, 2002 ). 

The sensitivity of complex systems, also known as nonlinear dynamic systems, 

to initial conditions, in general, was demonstrated in principle in the 1960s by 

Massachusetts Institute of Technology mathematician, Edward Lorenz, while 

he was studying a weather model using a computer. Lorenz found significant 

differences in outcomes using his model, when the initial conditions were 

changed by a very small amount: 

On a particular day in the winter of 1961, Lorenz wanted to re-examine a 

sequence of data coming from his model. Instead of restarting the entire 

run, he decided to save time and restart the run from somewhere in the 

middle. Using data printouts, he entered the conditions at some point 

near the middle of the previous run and re-started the model calcula­

tion. What he found was very unusual and unexpected. The data from the 

second run should have exactly matched the data from the first run. 

While they matched at first, the runs eventually began to diverge dra­

matically - the second run losing all resemblance to the first within a 

few "model" months. 

BRADLEY, 2010 

FIGURE 17.2 Plots of the data from two simulations of weather response over time. 

SOURCE: BRADLEY (2010) 
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398 GREEK AND KRAMER 

Plots of the time-series data from two of Lorenz's weather simulations ap­

pear in Figure 17.2. 

Lorenz rounded off a variable to three digits after the decimal instead of 

six, and this resulted in the different values shown in Figure 17.2. While no one 

knows which specific weather condition Lorenz recorded on the Y axis (it is 

commonly assumed that time is shown on the X axis), we do know the fluctua­

tions shown on the right-most portion of the Y axis are between extreme values, 

and thus we see that a tiny perturbation in starting values ( measured in units 

smaller than three decimal places), eventually yielded opposite predictions in 

the simulated weather. This experiment is the origin of expressions, such as, "a 

butterfly flaps its wings in Brazil, and it rains in America." Very small changes in 

initial conditions can result in dramatically different outcomes in complex sys­

tems. In fact, this behavior is a defining characteristic of a complex or chaotic 

system (Gleick, 2008). Obviously, Lorenz's computer program was intended to 

simulate weather, but because it lacked sufficiently detailed inputs, the model 

yielded dramatically different outputs depending on very small changes in the 

inputs - the initial conditions. This example demonstrates how a particu­

lar model, in this case a computer program, can be inadequate for simulat­

ing a complex system. Likewise, animal models are inadequate for predicting 

human response to drugs and disease. 

Examples of complex systems include cells, humans, non-human animals, 

ecosystems, economies, ant colonies, social interaction, and the United States 

electrical grid. For more on biological complex systems, see Ahn et al. (2006), 

Gell-Mann (1994), Goodwin (2001), Greek (2013c), Greek and Rice (2012), 

Kitano (2002); Morowitz (2002), Sole and Goodwin (2002), Van Regenmortel 

(2004a, b), Van Regenmortel and Hull (2002), Vojinovic (2015a, b). 

It is not easy to understand complex systems. Consider the following sum­

mary of the necessary background for understanding complex systems: 

This introductory textbook is intended for use in a one-semester course 

to acquaint biomedical engineers, biophysicists, systems physiologists, 

ecologists, biologists, and other scientists, in general, with complex­

ity and complex systems. I have focused on biochemical, genomic, and 

physiological complex systems, and I have also introduced the reader to 

the inherent complexity in economic systems [ . . . .  ] Reader background: 

Readers should have had college courses in algebra, calculus, ordinary 

differential equations, and linear algebra, and, hopefully, engineering 

systems analysis. They should also have had basic college courses in 

chemistry, biochemistry, cell biology, and ideally even in human physi­

ology and anatomy. This is the broad background that is required in the 
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interdisciplinary fields of biomedical engineering, biophysics, systems 

physiology, and economics. 

NORTHROP, 2011, pp. xiii-xvii 

Northrop (2011, p. xiii) also notes: "Broadly stated, we consider that complex­

ity is a subjective measure of the difficulty in describing and modeling a system 

( thing or process), and thus being able to predict its behavior" ( emphasis 

added). Again we note the fact that complex systems are difficult to model in 

terms of being able to predict outcomes to perturbations. 

Vicsek ( 2002, p. 131) states: 

In the past, mankind has learned to understand reality through simplifi­

cation and analysis. Some important simple systems are successful ideal­

izations or primitive models of particular real situations - for example, a 

perfect sphere rolling down an absolutely smooth slope in a vacuum. This is 

the world of Newtonian mechanics, and it ignores a huge number of other, 

simultaneously acting factors. Although it might sometimes not matter 

that details such as the motions of the billions of atoms dancing inside the 

sphere's material are ignored, in other cases reductionism may lead to in­

correct conclusions. In complex systems, we accept that processes that occur 

simultaneously on different scales or levels are important, and the intricate 

behaviour of the whole system depends on its units in a nontrivial way. Here, 

the description of the entire system's behaviour requires a qualitatively new 

theory, because the Laws that describe its behaviour are qualitatively differ­

ent from those that govern its individual units." (Emphasis added) 

Animal modeling seeks to use one complex system, be it a mouse or a monkey, 

to predict responses to perturbations that occur at higher levels of organiza­

tion, of another complex system - a human. To do so ignores the most basic 

fundamental features of complex systems, discussed above. Given those fea­

tures, it is outside the realm of science to use one complex system in expecta­

tion of its having predictive value for another, when the perturbation affects 

higher levels of organization. 

3 Evolutionary Biology 

Informally, evolution can be thought of as small changes in genes (i.e., initial 

conditions) that occur over long periods of time, resulting in new species with 

traits different from those of the ancestor organism. In otherwords, chimpanzees 
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and humans are both different from the primate that we descended from, and 

we are different from each other. But the notion that differences among genes 

can result in new species is separate from the fact that very small differences in 

genes can also lead to members of the same species reacting quite differently 

to drugs and disease. Humans and non-human animals are examples of com­

plex systems that have evolved over time - their initial conditions changed 

in the form of genetic make-up, and these changes affected the organism 

in a nonlinear fashion, just as we saw in Lorenz's computer model of weather. 

Even for two individuals within the same species, small differences in DNA 

can mean the difference between life and death. A tiny difference of one ami­

no acid within the human chromosome is all that separates a patient with 

life-threatening sickle cell anemia from those of us who can live free of that 

condition. Dramatic differences can exist across species without changes in 

amino acid sequences. Genes are regulated, turned on and off, by other genes. 

For example, mice and humans share the gene that allows mice to grow a tail 

( Graham, 2002 ). The reasons humans do not normally grow a tail during devel­

opment is that the gene is never turned on ( or expressed). Differences in gene 

regulation and expression vary within and between species and account for 

differences in response to drugs and disease (Kasowski et al., 2010; Marchetto 

et al., 2013; Morley et al., 2004; Pritchard et al., 2006; Rifkin, Kim and White, 

2003; Rosenberg et al., 2002; Sandberg et al., 2000; Seok et al., 2013; Storey et al., 

2007; Suzuki and Nakayama, 2003; Warren et al., 2014; Zhang et al., 2008). So, 

while it is a fact that humans share a large percentage of their genes with other 

mammals, this fact is largely immaterial in terms of predicting how humans 

will respond to perturbations, such as drugs and disease. For example, the pro­

gression of HIV to AI D S ,  which is common in humans, has been very rarely ob­

served in great apes. On the matter of non-human primates, Varki and Altheide 

(2005, p. 1746) write "[I]t is a striking paradox that chimpanzees are in fact not 

good models for many major human diseases/conditions". 

Based on facts from the theory of evolution and complexity science, there 

are robust theoretical reasons to conclude that, for all practical purposes, one 

species will have no predictive value for the response to perturbations that 

occur at higher levels of organization; and drugs and disease affect higher 

levels of organization. Note that we are not saying humans and non-human 

animals cannot ever respond similarly to the same drug or disease. They do 

in some instances. However, in order for there to be scientific merit in using 

non-human animals as predictive models for humans, the models would have 

to have a high predictive value as calculated using concepts we discuss in the 

following section. Consistent with theory, extensive empirical evidence shows 

that animal models do not have high predictive value for human response to 

drugs and disease, rendering their use in that context unscientific. 
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4 Empirical Evidence: The Failure of the Animal Model in Terms of 

Predictive Value for Humans 

We now delve into empirical evidence regarding the inability of the animal 

model to predict human response to drugs and disease. By comparing how well 

an animal-based test or research method corresponds to human results, we 

can determine how much predictive value the modality has. Predictive value 

is measured in science by using the calculations summarized in Table 17.1. In 

the discussion that follows, we refer to quantities from this table, such as gold 

standard, false positive, and false negative. Any given test or system can gener­

ally be compared to a gold standard, which is the most accurate one available 

under reasonable conditions. 

For example, the gold standard for determining whether a patient has a col­

lapsed lung is a computerized axial tomography (CT )  scan of the chest. Even 

clinically insignificant cases of a collapsed lung can be detected with a CT scan 

and clinically significant collapses are detected essentially 100% of the time. 

In reality, patients are assessed with a chest x-ray instead of a CT scan because 

an x-ray is quicker, easier, and less expensive than a CT  scan, and clinically 

significant collapses are detected by x-ray a very, very high percentage of the 

time. To determine the predictive value of the chest x-ray, one would perform 

both diagnostic tests on a group of patients and the calculations in Table 17.1. 

A positive chest x-ray ( an x-ray that revealed a collapsed lung) in light of a 

positive CT scan would be counted as a true positive (TP )  and listed under 

gold standard positive; while a negative chest x-ray (no collapsed lung) in light 

of a negative C T  scan would be listed as true negative (TN) and listed under 

gold standard negative. Similarly, a negative x-ray in light of a positive CT  scan 

would be labeled a false negative (FN); and a positive chest x-ray in conjunc­

tion with a negative CT  scan would be a false positive (FP) (see Nagarsheth and 

Kurek, 2011, for an example of this). 

In the case of evaluating animal models, outcomes in humans would be 

the gold standard. These same calculations can be performed for any test or 

modality where a gold standard can be known in contexts within and outside 

of biomedical science, for example to determine whether a patient has cancer, 

to determine whether a computer model can predict an outcome in engineer­

ing or business, or to determine the predictive value of drug sniffing dogs in 

airports. For more details see Greek ( 2014b ). 

Not all tests or methods need to have a high predictive value to be useful. 

For example, if you devised a method of winning at the blackjack table more 

than 50% of the time and bet appropriately each time and played long enough, 

probabilistically you would beat the house. But in medical science, we need 

much higher predictive values than 0.5. Even a probability of 0.999 can be 
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TABLE 17  . I  Binary classification test and formulas for determining how well a test or  practice 

compares with the most accurate test available under reasonable conditions. 

Test: 

Calculations: 

T+ 

T-

Sensitivity = T P  /(T P+FN) 

Specificity = TN /(FP+ TN)  

Gold Standard: 

GS+  

TP  

FN 

GS­

FP 

TN 

Positive Predictive Value (PPv) = TP /(TP+FP) = % of all positives that are true 

positives 

Negative Predictive Value (NPV) = TN /(FN +TN) = %  of all negatives that are true 

negatives 

Abbreviations: 

T- = Test negative 

T + = Test positive 

FP = False positive 

TP = True positive 

FN = False negative 

TN = True negative 

GS- = Gold standard negative 

GS+ = Gold standard positive 

inadequate. Drugs that harm even a very small percentage of patients, even 

one out of 1,000, have been pulled off the market because of life-threating side 

effects, such as total liver failure, heart attack, or stroke. Examples of widely­

marketed drugs that have been withdrawn due to unanticipated fatalities in­

clude Vioxx ( rofecoxib ), Propulsid ( cisapride ), and Rezulin ( troglitazone ). See 

Graham et al. (2005) and Attarwala (2010) for details on such instances. 

So what is an acceptable level of predictive value to expect from animal 

modeling? To answer this question, first we need to emphasize that accept­

able predictive value, like many things in life, varies depending on the context, 

as the blackjack example illustrates. Consider the case of deeming whether 

a species exhibits the trait of sentience, which is highly valued in the animal 
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protection movement as a feature to take into account when considering the 

ethics of animal modeling. Sentience can be assessed using criteria for which 

we could attempt to measure predictive value; but, nevertheless, a large gray 

zone emerges. Chimpanzees are clearly sentient, as are mammals in general. 

But when we consider invertebrates, the situation becomes less clear. Octopi 

appear to be both sentient and sapient, but what about sponges, worms, jel­

lyfish, and the common fruit fly? To date we do not have strong evidence that 

these entities exhibit sentience, but we may simply lack the power to detect 

sentience in all cases where it exists. Yet, our inability to conclude with cer­

tainty that sponges are sentient does not mean we can ignore the fact that 

chimpanzees do demonstrably exhibit sentience. The precautionary principle 

should be employed in cases where great suffering is at stake, meaning that 

our ability to deem a particular species as sentient should not be predicated 

on the requirement that there exists an assessment method with a predictive 

value as high as 0.99. 

Turning back to the matter at hand, predictive values for responses to drugs 

in development typically cluster around or below 0.5, which makes them no 

more useful for prediction than flipping a coin. Predictive values this low are of 

no use in medical science. When values in the 0.7 to 0.9 range are seen, physi­

cians and medical scientists cannot rely on the results, test, or modality alone, 

without verifying the item in question with other tests or modalities. To do so 

would be unethical; the patient deserves greater certainty before proceeding. 

Science in general relies on consilience, and medical research is not an excep­

tion. In this case, when deciding which modality to use, one must consider 

the mathematics of complex systems and the initial conditions in the form of 

evolutionary biology. Because animal models are used to make the life-altering 

decision of whether to take a drug to human trials or to abandon it, even values 

greater than 0.9 can be deemed inadequate and unacceptably costly in terms 

of the likelihood of adverse human consequences. 

The way around this problem of identifying the right predictive value is 

addressed by Greek and Greek (2004), Greek, Menache and Rice (2012), and 

Shanks and Greek (2009), and is summarized by Kramer and Greek (2018). 

The solution involves the use of human-based research and testing through 

personalized medicine; that is, matching gene( s) to drugs and disease in each 

patient. Based on the science of complex systems and evolutionary biology, 

we know categorically that using non-human animal models has unaccept­

ably low predictive value for human responses to drugs and disease. Thus, on 

balance, the use of animal models in drug development and disease research 

should be abandoned immediately for the same reasons that society has aban­

doned wrong or harmful medical practices such as phrenology, bloodletting, 

and trephination; they were simply ineffective. 
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We now tum to specific examples of the poor predictive value of animal 

models, starting with early empirical evidence dating back as early as the 1990s 

and ending with recent sets of evidence from 2016 that summarize decades of 

findings. 

Data from Suter (1990) and the nth edition of the Catalog of Teratogenic 

Agents (Shepard and Lemire, 2004) demonstrate the importance of using 

predictive values. Suter reported on the development of six drugs where 

humans and non-human animals shared 22 side effects. Suter's data revealed 

that animal models had a positive predictive value of 0.31. That is, if a side ef­

fect was seen in the animal models it had only a 31% chance of being seen in 

humans for these six drugs. This prediction rate, which is below that expected 

from a coin toss (heads we abandon the drug because of danger, and tails we 

continue to develop the drug), illustrates the failure of these animal models as 

predictors for human response. A naive but common retort to this fact is that if 

animal models derailed any drug that would have harmed humans, it is worth 

using animal models. The fallacy of this view becomes evident when consider­

ing the following assessment of empirical evidence on using animal models to 

predict human birth defects. 

The Catalog of Teratogenic Agents lists more than 3,100 agents, of which 

about 1,500 can produce congenital anomalies (birth defects) in experimental 

animals but not in humans. These are known as false positives. Furthermore, 

only about 40 cause birth defects in both humans and non-human animals. 

These are known as true positives. Based on these numbers and the formulas 

in Table 17.11 one can calculate a value of 3°/o for the positive predictive value. 

A positive predictive value of 3°/o tells us that for any given birth defect noted 

in non-human animals, there is only a 3°/o chance that it will also be seen in 

humans. A predictive value of 3°/o is obviously extremely poor but is consistent 

with the general lack of predictive value in using animal models to determine 

whether compounds are harmful to developing fetuses ( see Greek, Shanks and 

Rice, 2011, for more on teratogenicity and animal models). This means that for 

any drug that tests positive for birth defects, when tested for teratogenicity in 

animal models, there is about a 3% chance that it will harm human babies in 

utero. Predictive value does not mean that 3°/o of drugs that would have caused 

birth defects will be abandoned in development. Instead it means that of 100 

drugs tested and shown to harm animal fetuses, about three may harm the 

human fetus. Unfortunately, we do not know which three. So, abandoning a 

drug in development based on a test that has a low predictive value does not 

save babies. Moreover, when human health is involved, low predictive value 

means anything below 90%-95%; and, often times, even a probability of 99% 

is inadequate to base treatment on. The predictive value of animal modeling 
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falls far below 99%; for example, 3% in the above teratogenicity example. For 

more on this point, see Greek (2013a, b, 2014b ), Greek and Greek (2010 ), and 

Shanks, Greek, and Greek ( 2009 ). 

Values this low mean animal modeling per se has, for all practical purposes, no 

predictive value for human response to drugs and disease. Some researchers ar­

gue that any predictive value greater than zero means animal models have some 

predictive value. However, given the scope for serious adverse consequences, 

including death, the threshold number required in medical science has to be 

much higher than the typically observed 3% to 55% range of values seen when 

calculating the predictive value of animal modeling ( see previous references); 

hence the paradigm of animal modeling cannot be justified scientifically in 

this context. Medical science requires higher predictive values than one needs 

for winning at the blackjack table. 

In our discussion of the predictive value of animal models, we have focused 

so far on the context of response to drugs. It is also illuminating to consider 

predictive value in the context of disease research. Scientists are now match­

ing gene response to disease, and great variation is being observed across 

species. For instance, Seok et al. (2013) studied inflammatory processes, such 

as sepsis, in mice and humans and found no correlation between what the 

genes and responses did in mice versus what they did in humans. The follow­

ing statement, by science journalist Dolgin (2013, p. 118), puts Seok's and col­

leagues' findings in context: "Yet, despite the fact that some compounds have 

repeatedly reversed the symptoms of sepsis in animal tests, not a single drug 

has proven effective in human clinical trials, even though more than 30,000 

people have been included in randomized controlled studies, involving candi­

date antisepsis agents over the past 25 years". 

Thus, in searching for a treatment for sepsis, tens of thousands of people 

were exposed to the risks of a new drug, and billions of dollars were wasted 

based on animal studies, the results of which proved unrelated to human out­

comes. Even more patients were unable to access a potentially effective drug 

that might have been identified had the resources been dedicated instead to 

human-based research. 

The failure of animal models in these cases appears to be due to differences 

in gene response between humans and mice (Seok et al., 2013; Warren et al., 

2014). Considering that humans and non-human animals are evolved complex 

systems, there is no reason to expect other diseases or conditions would allow 

animal models to have high predictive value. Indeed, many diseases have been 

studied and similarity in responses among species found only at very low rates 

and usually in retrospect (Enna and Williams, 2009; Hau, 2003; Lin, 1995). (Note 

that basic science research is prone to the same critique. Many researchers now 
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claim that basic research on non-human animals has high predictive value for 

humans. See, for example, Devoy et al., 2012; Groenink, Folkerts and Schuurman, 

2015; Katzner et al., 2009; National Science Foundation, 2011; Rudczynski, 2011; 

van Meer, Graham and Schuurman, 2015. Such claims invite the same scrutiny 

as claims about predictive value in drug development and disease research.) 

Based on the track record of drugs that have been tested on non-human 

animals to date, the poor predictive value of animal models used in preclinical 

research, and the fact that humans and non-human animals are evolved 

complex systems, there is every reason to believe yet-to-be-developed drugs 

identified through the use of animal models will similarly exhibit profoundly 

different responses in non-human animals versus humans. The exceptions to 

this rule occur when the perturbation affects levels of organization where the 

system under analysis is simple or where conserved processes are involved. But 

even when conserved processes are being studied ( e.g., the mechanism for cell 

replication, the cytochrome P 450s, and the presence of various receptors), the 

outcomes to perturbations to these processes vary among species (Greek and 

Rice, 2012 ). 

Turning to other medical applications, around 100 vaccines have been 

shown to be effective against HIV-like viruses in animal models, to date. None 

have been effective in humans (Bailey, 2008; Editorial, 2007; Gamble and Mat­

thews, 2010 ). More than a thousand drugs have been seen to protect against 

nervous system damage in animal models of stroke. Again, none have been 

protective in humans (Dimagl, 2006; Dimagl and Macleod, 2009; Macleod, 

2004; O'Collins et al., 2011; O'Collins et al., 2006; Sena et al., 2007 ). Fouad, Hurd 

and Magnuson (2013) identify over 10,000 publications modeling spinal cord 

injury in rats and mice. Many treatments identified in those publications have 

been effective in non-human animals but failed in humans, and spinal cord 

injury resulting in paralysis remains incurable in humans. 

The predictive value of the above-mentioned medical applications would 

be roughly zero. In order to prove a test or practice has poor predictive value 

( as opposed to predictive value numerically equal to zero), one only has to 

show a relatively small number of failures compared to the successes. The 

above examples are adequate. Conversely, proving a practice has high predic­

tive value requires examples from a large number of studies. To the best of our 

knowledge, there are no studies of any kind that show high predictive value 

of animal models for drugs or disease. Drawing on knowledge from complex 

systems and the theory of evolution, one can easily infer that the above ex­

amples are representative of all animal models and are not exceptions to the 

rule. Moreover, the studies described above are a small sample of the many 

such instances that have been recorded in the medical literature showing the 
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animal model's overall lack of predictive value. For more examples see Arrow­

smith (2011a, b ), Chiou et al. (2000 ), Ennever et al. (1987), Fletcher (1978), Grass 

and Sinko (2002), Hughes (2008), Litchfield (1962), Igarashi et al. (1995, 1996), 

Johnson et al. (2001), Kola and Landis (2004), Kummar et al. (2007), Lesko 

and Woodcock (2004), Lumley (1990), Mahmood (2000), Smith and Caldwell 

(1977), Spriet-Pourra and Auriche (1994), van Meer et al. (2012), and Weaver et 

al. (2003). Despite the above, important international regulatory bodies still 

require animal-based research and testing. See for example, the Organisation 

for Economic Co-operation and Development (2018) and the International 

Council for Harmonization of Technical Requirements for Pharmaceuticals 

for Human Use (2011). 

The overall consequence of continued reliance on animal models is evi­

dent when considering the costly failures seen in drug development. For the 

past few decades, arguably the period when our advanced scientific sophisti­

cation should have been yielding the greatest progress in drug development, 

the success rate in human clinical trials of drugs that entered those trials, 

based on data from animals, was about 10% (see, e.g., B I O ,  Biomedictracker 

and Amplion, 2016; Smietana, Siatkowski and Moller, 2016). Safety/toxicity and 

efficacy are the two characteristics researchers seek to evaluate when using 

animal models in drug development. But drugs developed using animal mod­

els have systematically failed in human clinical trials for both safety/toxicity 

reasons and efficacy reasons. Moreover, even more drugs have failed when 

prescribed to large numbers of people, dropping the success rate below 10%. 

Granted there are many reasons that drugs fail to enter the market, but these 

are rare in comparison to the frequency with which efficacy and safety issues 

have failed to be revealed by animal modeling. 

Based on our discussion above of evolved complex systems, evolution, and 

the empirical data, we conclude that animal models, overall, do not and can­

not have a numeric predictive value above about 50%; and, hence, we conclude 

that, for all practical purposes, they have no predictive value. By this we do not 

mean the predictive value of any given animal model is exactly equal to zero, 

but rather that the predictive value is so low that it is necessarily below any 

reasonable threshold to be considered useful in medical science in general. 

5 Summary 

Drawing on theoretical principles, based on evolutionary biology and complex 

systems, and based on extensive empirical evidence, the position that animal 

modeling has predictive value for human response to drugs in general has 
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been falsified. TSMT i s  a theory, and, like all scientific theories, i t  i s  consistent 

with this definition from the National Academies of Science Engineering Med­

icine (2016): "In everyday usage, theory often refers to a hunch or a speculation. 

When people say, 'I have a theory about why that happened,' they are often 

drawing a conclusion based on fragmentary or inconclusive evidence. The for­

mal scientific definition of theory is quite different from the everyday meaning 

of the word. It refers to a comprehensive explanation of some aspect of nature 

that is supported by a vast body of evidence". 

Researchers who aim to improve human outcomes cannot continue to treat 

humans and non-human animals as simple systems and expect results based 

on non-human animals to translate to human patients. TSMT is the first com­

prehensive theory that explains the past failures and apparent successes of 

animal modeling and also explains why animal models will never achieve pre­

dictive value and, thus, should be abandoned. 

We acknowledge that the scientific community as a whole is not yet familiar 

with TSMT; but we are confident that, in time, a consensus will be reached. 

Kramer and Greek (2018) explain the obstacles that must be overcome to 

ensure that drug development and the study of diseases are based on sound 

science. This will require changes to the regulations that currently mandate 

the use of animal models. Furthermore, Kramer and Greek (2018) discuss 

modern techniques that fall under the heading of personalized medicine, 

which offer treatments and cures that are customized to a patient's individual 

genetic make-up and, hence, sidestep the significant risks associated with the 

continued blind reliance on methods arising from the use of animal models. 
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